13 research outputs found

    Local generation of hydrogen for enhanced photothermal therapy.

    Get PDF
    By delivering the concept of clean hydrogen energy and green catalysis to the biomedical field, engineering of hydrogen-generating nanomaterials for treatment of major diseases holds great promise. Leveraging virtue of versatile abilities of Pd hydride nanomaterials in high/stable hydrogen storage, self-catalytic hydrogenation, near-infrared (NIR) light absorption and photothermal conversion, here we utilize the cubic PdH0.2 nanocrystals for tumour-targeted and photoacoustic imaging (PAI)-guided hydrogenothermal therapy of cancer. The synthesized PdH0.2 nanocrystals have exhibited high intratumoural accumulation capability, clear NIR-controlled hydrogen release behaviours, NIR-enhanced self-catalysis bio-reductivity, high NIR-photothermal effect and PAI performance. With these unique properties of PdH0.2 nanocrystals, synergetic hydrogenothermal therapy with limited systematic toxicity has been achieved by tumour-targeted delivery and PAI-guided NIR-controlled release of bio-reductive hydrogen as well as generation of heat. This hydrogenothermal approach has presented a cancer-selective strategy for synergistic cancer treatment

    Light-triggered nitric oxide release and structure transformation of peptide for enhanced intratumoral retention and sensitized photodynamic therapy

    No full text
    Tumor-targeted delivery of nanomedicine is of great importance to improve therapeutic efficacy of cancer and minimize systemic side effects. Unfortunately, nowadays the targeting efficiency of nanomedicine toward tumor is still quite limited and far from clinical requirements. In this work, we develop an innovative peptide-based nanoparticle to realize light-triggered nitric oxide (NO) release and structural transformation for enhanced intratumoral retention and simultaneously sensitizing photodynamic therapy (PDT). The designed nanoparticle is self-assembled from a chimeric peptide monomer, TPP-RRRKLVFFK-Ce6, which contains a photosensitive moiety (chlorin e6, Ce6), a β-sheet-forming peptide domain (Lys-Leu-Val-Phe-Phe, KLVFF), an oligoarginine domain (RRR) as NO donor and a triphenylphosphonium (TPP) moiety for targeting mitochondria. When irradiated by light, the constructed nanoparticles undergo rapid structural transformation from nanosphere to nanorod, enabling to achieve a significantly higher intratumoral accumulation by 3.26 times compared to that without light irradiation. More importantly, the conversion of generated NO and reactive oxygen species (ROS) in a light-responsive way to peroxynitrite anions (ONOO-) with higher cytotoxicity enables NO to sensitize PDT in cancer treatment. Both in vitro and in vivo studies demonstrate that NO sensitized PDT based on the well-designed transformable nanoparticles enables to eradicate tumors efficiently. The light-triggered transformable nanoplatform developed in this work provides a new strategy for enhanced intratumoral retention and improved therapeutic outcome

    Vacuum-Dried Synthesis of Low-Density Hydrophobic Monolithic Bridged Silsesquioxane Aerogels for Oil/Water Separation: Effects of Acid Catalyst and Its Excellent Flexibility

    No full text
    Low-density hydrophobic monolithic bridged silsesquioxane aerogels were prepared by vacuum drying using terephthalaldehyde (TPAL) and 3-aminopropyl-triethoxysilane (APTES) as precursors and acetic acid as catalyst. The effects of acid on the vacuum-dried synthesis of bridged silsesquioxane aerogels were investigated. The results indicate that the growth mechanism changes from cluster–cluster to monomer–cluster when acid is added, which induces the formation of the low-density monolithic aerogels with increased pore size. The methyltrimethoxysilane (MTMS) co-precursor could endow the aerogels with good hydrophobicity. The densities, pore structure, hydrophobicity, and mechanical properties of the obtained bridged silsesquioxane aerogels were investigated in detail. The results show that the monolithic aerogels possess low density (0.071 g/cm<sup>3</sup>), high hydrophobicity (contact angle, >140°), and excellent flexibility (Young’s modulus, 0.029 MPa). All of these characteristics make the hydrophobic aerogels competitive candidates for oil/water separation

    Vacuum-Dried Synthesis of Low-Density Hydrophobic Monolithic Bridged Silsesquioxane Aerogels for Oil/Water Separation: Effects of Acid Catalyst and Its Excellent Flexibility

    No full text
    Low-density hydrophobic monolithic bridged silsesquioxane aerogels were prepared by vacuum drying using terephthalaldehyde (TPAL) and 3-aminopropyl-triethoxysilane (APTES) as precursors and acetic acid as catalyst. The effects of acid on the vacuum-dried synthesis of bridged silsesquioxane aerogels were investigated. The results indicate that the growth mechanism changes from cluster–cluster to monomer–cluster when acid is added, which induces the formation of the low-density monolithic aerogels with increased pore size. The methyltrimethoxysilane (MTMS) co-precursor could endow the aerogels with good hydrophobicity. The densities, pore structure, hydrophobicity, and mechanical properties of the obtained bridged silsesquioxane aerogels were investigated in detail. The results show that the monolithic aerogels possess low density (0.071 g/cm<sup>3</sup>), high hydrophobicity (contact angle, >140°), and excellent flexibility (Young’s modulus, 0.029 MPa). All of these characteristics make the hydrophobic aerogels competitive candidates for oil/water separation

    Facile Coordination-Precipitation Route to Insoluble Metal Roussin’s Black Salts for NIR-Responsive Release of NO for Anti-Metastasis

    No full text
    A facile and general coordination-precipitation method is developed to synthesize insoluble metal Roussin’s black salts (Me-RBSs) as a new type of NIR-responsive NORMs. The weak-field ligand coordination of metal<sup>+</sup>–RBS<sup>–</sup> brings a NIR absorption effect of Me-RBSs, and further gives rise to the NIR adsorption-dependent NIR-responsive NO release profile. Intratumoral NIR-responsive release of NO effectively inhibits the growth and metastasis of the metastatic breast cancer. Aqueous insolubility of Me-RBSs ensures lower cytotoxicity and higher thermostability compared with traditional soluble RBSs. This work establishes a new class of NIR-sensitive NO donors, and may spark new inspiration for designing intelligent gas-releasing molecules
    corecore